
https://manara.edu.sy/

https://manara.edu.sy/

Introduction to Robot Operating
System (ROS 1)

Dr. Essa Alghannam

Playing with ROS nodes, topics and messages- turtlesim example
discusses the use of: roscore, rosnode, and rosrun commandline tools

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

roscore command

• roscore is the first thing you should run when using ROS, before starting
with anything,

$ roscore

1-Master + rosout node
2-It's a crucial component that acts as a central server or the
central hub of a ROS network (the heart of the entire system).
It's essential for ROS nodes to communicate smoothly and
exchange data effectively (air traffic control tower for your ROS
network).

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

Ros Master

• Nodes Management: The ROS Master maintains a registry of all nodes on the network,
allowing them to discover each other and their capabilities.

• Topic Management: It handles the creation and management of topics – the channels
through which nodes publish and subscribe to messages.

• Parameter Server Management: It provides a central location for storing configuration
parameters that can be accessed by all nodes.

• Service Management: It manages ROS services, which allow nodes to request specific
actions or data from other nodes.

• Time Synchronization: Ensures all nodes in the system have a common understanding
of time.

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

• A single ROS Master should run for each network.

• If you have multiple computers, you'll usually have one designated as the primary ROS
Master.

• ROS Nodes: When you run ROS nodes (like your publisher or subscriber nodes), they
automatically connect to the running ROS Master.

Notes - Ros Master

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

In Terminal 1:

roscore

In Terminal 2:

rosrun my_package my_publisher_node.py

In Terminal 3:

rosrun my_package my_subscriber_node.py

• In this example, the `roscore` in
Terminal 1 starts the ROS Master.
The

• `my_publisher_node` and
`my_subscriber_node` scripts in
Terminals 2 and 3 will
automatically connect to the ROS
Master to communicate with each
other.

Example ROS network on same computer

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

• Start roscore: Open a
terminal on your laptop
and run: bash roscore
This starts the ROS
Master, which acts as the
central hub for
communication between
nodes.

• Install ROS Noetic on Raspberry Pi: Follow the instructions for setting up ROS
Noetic on the Raspberry Pi
(https://wiki.ros.org/noetic/Installation/RaspberryPi).

• Connect Raspberry Pi to Network: Ensure your Raspberry Pi is connected to the
same network as your laptop (wired or wireless).

• Set ROS Master Address: You need to tell the Raspberry Pi to connect to your
laptop's ROS Master. Edit the ~/.bashrc file on the Raspberry Pi and add the
following: bash export
ROS_MASTER_URI=http://your_laptop_ip_address:11311 Replace
your_laptop_ip_address with the actual IP address of your laptop.

• Test ROS Connection: After the Raspberry Pi reboots, open a terminal on it and
run: bash rosnode list You should see a list of nodes running on your laptop's
ROS Master.

Raspberry Pilaptop

Example ROS network between two
computers

Firewall: Ensure that the ROS ports (like 11311) are not blocked by firewalls on any of the computers.

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

running `roscore` on each computer in a lab
setting for teaching purposes
1. Isolated Networks:

Create Separate Subnets: The key is to isolate the student workstations into separate subnets. This means each
computer has a different IP address range, preventing them from directly communicating with each other.

Network Configuration: Ensure that each subnet is properly configured with its own gateway and DNS server.

2. Dedicated `roscore` per Workstation:

Run `roscore` on each computer: Each student's workstation will have its own `roscore` running.

Adjust `ROS_MASTER_URI`: Each `roscore` instance will have a unique ROS master URI. You'll need to
configure the `ROS_MASTER_URI` environment variable on each workstation to point to its respective
`roscore`.

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

• Example Configuration (for demonstration):

Workstation 1:

 * IP: 192.168.1.10

 * ROS_MASTER_URI: `http://192.168.1.10:11311`

Workstation 2:

 * IP: 192.168.2.10

 * ROS_MASTER_URI: `http://192.168.2.10:11311`

running `roscore` on each computer in a lab
setting for teaching purposes

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

If roscore does not initialize and sends a message about lack of permissions, probably the ~/.ros folder is owned by root,
change recursively the ownership of that folder with:

$ sudo chown -R <your_username> ~/.ros
$ essa@essa:~$ id -un
essa
$ sudo chown -R essa ~/.ros

The command `sudo chown -R essa ~/.ros` does the following:
* Uses `sudo` to elevate your permissions to the root user.
* Uses `chown` to change the ownership of the `~/.ros` directory.
* Uses the `-R` flag to change the ownership recursively, affecting all files and subdirectories within `~/.ros`.
* Sets the new owner to the user `essa`.

roscore command

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

essa@essa:~$ roscore
... logging to /home/essa/.ros/log/fbb5336a-790f-11ef-bd9f-af7604c9ebae/roslaunch-essa-2665.log
Checking log directory for disk usage. This may take a while.
Press Ctrl-C to interrupt
Done checking log file disk usage. Usage is <1GB.

started roslaunch server http://essa:43633/
ros_comm version 1.16.0

SUMMARY
========

PARAMETERS
 * /rosdistro: noetic
 * /rosversion: 1.16.0

Logging to `/home/essa/.ros/log/ fbb5336a-790f-11ef-bd9f-af7604c9ebae / roslaunch-
essa-2665..log`

* `logging to ...`: This tells you where ROS is storing its logs, which are useful for
debugging problems.
* `/home/essa/.ros/log`: This is the location of your ROS log directory, typically found in
your home directory.
* `a951c51e-7821-11ef-a4fd-4d1c265cc579`: This is a unique ID assigned to this
particular ROS session (or "run"). It helps keep logs from different sessions organized.
* `roslaunch-essa-15297.log`: This is the specific log file being used for this `roscore`
instance.

* `PARAMETERS`: This lists parameters set for your ROS
environment.
 * `/rosdistro: noetic`: This is the ROS distribution you're using (in
this case, Noetic).
 * `/rosversion: 1.16.0`: This indicates the ROS version.

roscore command
output

`started roslaunch server http://essa:42663/`

* `started roslaunch server`: ROS is running a server (likely using a web-based
interface for managing your ROS environment)
* `http://essa:42663/`: This is the address (IP address and port) where you can
access the roslaunch server.

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

`NODES`: This section shows the nodes that are running.

 1- `auto-starting new master`: The ROS Master is starting automatically.

 2- `process[master]: started with pid [2694]`: The master process has been started with a process ID (PID) of 2694.

 3- `ROS_MASTER_URI=http://essa:11311/`: This is the URL you can use to connect to the ROS Master from other nodes.

 4- `setting /run_id to fbb5336a-790f-11ef-bd9f-af7604c9ebae`: A unique ID is set for this ROS session, as mentioned earlier.

 5- `process[rosout-1]: started with pid [2707]`: The `/rosout` logging node has also started with a PID of 2707.

 6- `started core service [/rosout]`: This confirms that the `/rosout` core service is running.

NODES

auto-starting new master
process[master]: started with pid [2694]
ROS_MASTER_URI=http://essa:11311/

setting /run_id to fbb5336a-790f-11ef-bd9f-af7604c9ebae
process[rosout-1]: started with pid [2707]
started core service [/rosout]

roscore command
output

PID: (Process ID) A unique number assigned to each running
process by the operating system.

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

Understanding ROS Nodes

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

• Nodes: The basic unit of ROS. an executable file within a ROS package.

• Nodes are written with an ROS client library, for example, roscpp (c++ client library) or
rospy (python client library).

• Each ROS node is a program that performs a specific task.

• A node must have a unique name in the system. This name is used to permit the node to
communicate with another node using its name without ambiguity.

• Nodes can publish or subscribe to a Topic. Nodes can also provide or use a Service.

The ROS Computation
Graph level- NODES

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

Example:

Think of a robot navigating a room.

Nodes:

 1 `Camera Node`: Captures images from the camera.

 2 `Motion Planning Node`: Generates a path for the robot.

 3 `Motor Control Node`: Controls the robot's movements.

ROS Master: The ROS Master helps the nodes find each other and communicate.

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

rosnode command-line tool

• rosnode list: This lists the active nodes. to get information about the nodes that are running.

• rosnode info node: This prints information about the node.

• rosnode ping node: This tests the connectivity to the node.

The tool rosnode is a command-line tool for displaying information about nodes that
are currently running.
The commands supported are as follows:

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

Open up a new terminal, and let's use rosnode to see what running roscore did...

$ rosnode list: lists these active nodes

You will see only node running is :

/rosout
it is the default ROS logger.
1- Error Reporting: If any ROS node encounters an error, it will typically
send a message to `/rosout`, which then logs it.
2-Always Active: `/rosout` is always running in the background, ready to
collect these messages.

rosnode list command

It is normal because this
node runs whenever
roscore is run.

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

rosnode info command
$ rosnode info /rosout

• `rosnode info`: This is the ROS command used to obtain information about a specific ROS node.

• `/rosout`: This is the name of the ROS node you want to get information about.

• `/rosout` is the core ROS logging node.

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

essa@essa:~$ rosnode info /rosout
--
Node [/rosout]
Publications:
 * /rosout_agg [rosgraph_msgs/Log]

Subscriptions:
 * /rosout [unknown type]

Services:
 * /rosout/get_loggers
 * /rosout/set_logger_level

contacting node http://essa:33053/ ...
Pid: 2707

$ rosnode info /rosout

Type of messages
Topics names

Nodes topics messages

services

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

Using rosrun

$ rosrun [package_name] [node_name]

$ rosrun turtlesim turtlesim_node // existed package and node

$ rosrun turtlesim turtlesim_node_name:=???

$ rosnode list

• /rosout

• /turtlesim

rosrun allows you to use the package name to directly run a node within a
package (without having to know the package path).

https://wiki.ros.org/turtlesimopen a new terminal

a new node with the name
/turtlesim

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

[INFO] [1730457000.440218556]: Starting turtlesim with node name /turtlesim
[INFO] [1730457000.447463127]: Spawning turtle [turtle1] at x=[5.544445], y=[5.544445], theta=[0.000000]

This is a timestamp, representing the time (in
seconds since the Unix epoch) when the message
was generated.

Default name

Orientation In radiansPosition in pixels

the origin (the bottom-left corner) of the `turtlesim` window

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

call this command:
rosnode ping /turtlesim
it shows
rosnode: node is [/turtlesim]
pinging /turtlesim with a timeout of 3.0s
xmlrpc reply from http://essa:35091/ time=2.931118ms
xmlrpc reply from http://essa:35091/ time=2.041340ms

$ rosnode list

• /rosout

• /turtlesim
a new node with the name
/turtlesim

to send a "ping" message to the `/turtlesim` node. It sets a
timeout of 3 seconds. If the node doesn't respond within that
time, the ping will fail.

This means the `/turtlesim` node
successfully responded to the ping request.

how long it took for the node to
respond to the ping request.

http://essa: 35091 /` is the URI (Uniform Resource
Identifier) of the `/turtlesim` node.
"Essa“: hostname of your computer,
35091 is a port number used for ROS communication.

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

XML-RPC (eXtensible Markup
Language - Remote Procedure Call)

• XML (eXtensible Markup Language): A standardized way to structure data in a text-based format.

• XML is like a set of tags that define elements and attributes, making data easily readable and
transferable.

• RPC (Remote Procedure Call): A mechanism for one computer to call a function or procedure on another
computer.

• It's like making a request to another computer to do something.

• In ROS, XML-RPC is used for communication between different ROS nodes (programs).

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

rosrun turtlesim turtlesim_node __name:=my_turtle

$ rosnode list

/my_turtle

/rosout

rosnode ping my_turtle
The command `rosnode ping my_turtle` in ROS is used to check
if a specific ROS node “my_turtle” is alive and responsive.

Close the previous turtlesim window and recall:

rosnode: node is [/my_turtle]
pinging /my_turtle with a timeout of 3.0s
xmlrpc reply from http://essa:38571/ time=0.844955ms
xmlrpc reply from http://essa:38571/ time=1.895905ms

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

Review

What was covered:

roscore = ros+core : master (provides name service for ROS) + rosout (stdout/stderr) + parameter server
(parameter server will be introduced later)

rosnode = ros+node : ROS tool to get information about a node.

rosrun = ros+run : runs a node from a given package.

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

Understanding ROS Topics

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

3. Topics

• Topics: Channels for data exchange.

• Nodes publish messages to topics and other nodes subscribe to those topics to receive data.

• Topics: when a node is sending data, we say that the node is publishing a topic.

• Nodes can receive topics from other nodes simply by subscribing to the topic.

• It's important that the name of the topic must be unique.

• A node can subscribe to a topic only if it has the same message type.

• Nodes can publish messages to a topic as well as subscribe to a topic to receive messages.

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

Example:

• Think of a robot navigating a room.
Nodes:
• `Camera Node`: Captures images from the camera.
• `Motion Planning Node`: Generates a path for the robot.
• `Motor Control Node`: Controls the robot's movements.
Topics:
• `/camera/image`: The camera node publishes images to this topic.
• `/navigation/goal`: The motion planning node subscribes to this topic to receive the desired destination.
• `/motor/commands`: The motion planning node publishes motor commands to this topic.
ROS Master: The ROS Master helps the nodes find each other and communicate.

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

roscore

rosrun turtlesim turtlesim_node

rosrun turtlesim turtle_teleop_key

Understanding ROS Topics

• The turtlesim_node and the turtle_teleop_key node are
communicating with each other over a ROS Topic.

• turtle_teleop_key is publishing the key strokes on a topic,
while turtlesim subscribes to the same topic to receive the
key strokes. move the turtle using the arrow keys

• rqt_graph shows the nodes and topics currently running.

turtle keyboard teleoperation

If you have another turtlesim window by calling this command:
 rosrun turtlesim turtlesim_node __name:=my_turtle

the two windows will response to turtle_teleop_key

rosnode list
/rosout
/teleop_turtle
/turtlesim

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

rosnode kill /turtlesim

This command specifically tells the ROS
master to terminate the node named
`/turtlesim`.

rosnode list
/rosout
/teleop_turtle
/turtlesim

rosnode info /turtlesim

Node [/turtlesim]
Publications:
 * /rosout [rosgraph_msgs/Log]
 * /turtle1/color_sensor [turtlesim/Color]
 * /turtle1/pose [turtlesim/Pose]

Subscriptions:
 * /turtle1/cmd_vel [geometry_msgs/Twist]

Services:
 * /clear
 * /kill
 * /reset
 * /spawn
 * /turtle1/set_pen
 * /turtle1/teleport_absolute
 * /turtle1/teleport_relative
 * /turtlesim/get_loggers
 * /turtlesim/set_logger_level

contacting node http://essa:35091/ ...
Pid: 5826
Connections:
 * topic: /rosout
 * to: /rosout
 * direction: outbound (50707 -
127.0.0.1:40716) [26]
 * transport: TCPROS
 * topic: /turtle1/cmd_vel
 * to: /teleop_turtle (http://essa:36819/)
 * direction: inbound (36804 - essa:57261)
[28]
 * transport: TCPROS

kill -9 5826

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

$ rosnode info /teleop_turtle

$ rosnode ping /teleop_turtle

$ rosnode kill / teleop_turtle

Try after that to call:

$ rosnode ping /teleop_turtle

$ rosnode list

• a common issue when working with ROS.
• a central "master" node that keeps track of all other

nodes in the network. Even if you kill the node, the ROS
master might still think the node is alive.

• Process Still Running: Sometimes, the node process itself
might not have completely shut down, even if the
window is closed. This can happen due to background
processes or lingering connections.

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

Using rqt_graph

• rqt_graph creates a dynamic graph of what's going on in the system.

• rqt_graph is part of the rqt package.

• Unless you already have it installed, run:
$ sudo apt-get install ros-noetic-rqt
$ sudo apt-get install ros-noetic-rqt-common-plugins

rosrun rqt_graph rqt_graphIn a new terminal:

• the turtlesim_node and the
turtle_teleop_key nodes are
communicating on the topic named:
/turtle1/command_velocity.

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

Introducing rostopic

The rostopic tool allows you to get information about ROS topics.
You can use the help option to get the available sub-commands for rostopic
$ rostopic -h
rostopic bw /topic: display bandwidth used by topic
rostopic echo /topic: print messages to screen
 rostopic hz /topic: display publishing rate of topic
rostopic list print information about active topics
rostopic pub publish data to topic
rostopic type /topic: This prints the topic type (the type of message it publishes).
rostopic find message_type: This finds topics by their type.
rostopic info /topic: This prints information about the active topic.
Or pressing tab key after rostopic prints the possible sub-commands:
$ rostopic
bw echo find hz info list pub type

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

rostopic echo shows the data published on a topic.

rostopic echo [topic]
Let's look at the command velocity data published by the turtle_teleop_key node.
Run the following command line , use the arrow keys to see what data is being sent:
In a new terminal, run:
$ rostopic echo /turtle1/cmd_vel
we can see the type of message sent by the topic using the following command lines:
$ rostopic type /turtle1/cmd_vel

Using rostopic echo linear:
x: 2.0
y: 0.0
z: 0.0

angular:
x: 0.0
y: 0.0
z: 0.0

linear:
x: 2.0
y: 0.0
z: 0.0

angular:
x: 0.0
y: 0.0
z: 0.0

geometry_msgs/Twist

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

rostopic echo, shown here in red, is now also subscribed to the turtle1/command_velocity topic.

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

Using rostopic list

$ rostopic list -h

Options:
 -h, --help show this help message and exit
 -b BAGFILE, --bag=BAGFILE (list topics in .bag file)
 -v, --verbose list full details about each topic
 -p list only publishers
 -s list only subscribers

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

rostopic list -v
This displays a verbose list of topics to publish to and subscribe to and their type.

Published topics:
 * /turtle1/color_sensor [turtlesim/Color] 1 publisher
 * /turtle1/cmd_vel [geometry_msgs/Twist] 1 publisher
 * /rosout [rosgraph_msgs/Log] 2 publishers
 * /rosout_agg [rosgraph_msgs/Log] 1 publisher
 * /turtle1/pose [turtlesim/Pose] 1 publisher

Subscribed topics:
 * /turtle1/cmd_vel [geometry_msgs/Twist] 1 subscriber
 * /rosout [rosgraph_msgs/Log] 1 subscriber

Using rostopic list -v

This tells you that one node you queried is publishing
message about velocity commands (of type
`geometry_msgs/Twist`) to the `/turtle1/cmd_vel` topic.
This is likely the command topic used to control the turtle's
movement in `turtlesim`.

https://manara.edu.sy/

https://manara.edu.sy/

https://manara.edu.sy/

شكرا لحسن الاصغاء

https://manara.edu.sy/

	Slide 1: Introduction to Robot Operating System (ROS 1)
	Slide 2: roscore command
	Slide 3: Ros Master
	Slide 4: Notes - Ros Master
	Slide 5
	Slide 6
	Slide 9: running `roscore` on each computer in a lab setting for teaching purposes
	Slide 10: running `roscore` on each computer in a lab setting for teaching purposes
	Slide 12: roscore command
	Slide 13: roscore command output
	Slide 14: roscore command output
	Slide 15: Understanding ROS Nodes
	Slide 16
	Slide 17: Example:
	Slide 18: rosnode command-line tool
	Slide 19: rosnode list command
	Slide 20: rosnode info command $ rosnode info /rosout
	Slide 21: $ rosnode info /rosout
	Slide 22: Using rosrun
	Slide 23
	Slide 24
	Slide 25: XML-RPC (eXtensible Markup Language - Remote Procedure Call)
	Slide 26: rosrun turtlesim turtlesim_node __name:=my_turtle
	Slide 27: Review
	Slide 28: Understanding ROS Topics
	Slide 29: 3. Topics
	Slide 30: Example:
	Slide 31: Understanding ROS Topics
	Slide 32
	Slide 33
	Slide 34: Using rqt_graph
	Slide 35: Introducing rostopic
	Slide 36
	Slide 37
	Slide 38: Using rostopic list
	Slide 39: Using rostopic list -v
	Slide 40

